Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Cell Stem Cell ; 31(5): 640-656.e8, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701758

Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 µm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.


Actins , Germ Layers , Osmotic Pressure , Polymerization , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Models, Biological , Tight Junctions/metabolism
2.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Article En | MEDLINE | ID: mdl-38706008

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Integrins , Laminin , Humans , Laminin/metabolism , Integrins/metabolism , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/metabolism , Brain Stem Neoplasms/therapy , Diffuse Intrinsic Pontine Glioma/pathology , Diffuse Intrinsic Pontine Glioma/genetics , Cell Adhesion/drug effects , Cell Movement , Cell Line, Tumor , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Glioma/therapy
3.
Arthritis Res Ther ; 26(1): 53, 2024 02 17.
Article En | MEDLINE | ID: mdl-38368390

BACKGROUND: Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS: In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS: Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION: These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.


Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/pharmacology , Receptors, Tumor Necrosis Factor, Type II/therapeutic use , Disease Models, Animal , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Pain/etiology , Pain/metabolism , Inflammation/metabolism
4.
Nat Rev Rheumatol ; 20(1): 7-20, 2024 Jan.
Article En | MEDLINE | ID: mdl-38057475

Advances in the profiling of human joint tissues at single-cell resolution have provided unique insights into the organization and function of these tissues in health and disease. Data generated by various single-cell technologies, including single-cell RNA sequencing and cytometry by time-of-flight, have identified the distinct subpopulations that constitute these tissues. These timely studies have provided the building blocks for the construction of single-cell atlases of joint tissues including cartilage, bone and synovium, leading to the identification of developmental trajectories, deciphering of crosstalk between cells and discovery of rare populations such as stem and progenitor cells. In addition, these studies have revealed unique pathogenetic populations that are potential therapeutic targets. The use of these approaches in synovial tissues has helped to identify how distinct cell subpopulations can orchestrate disease initiation and progression and be responsible for distinct pathological outcomes. Additionally, repair of tissues such as cartilage and meniscus remains an unmet medical need, and single-cell methodologies can be invaluable in providing a blueprint for both effective tissue-engineering strategies and therapeutic interventions for chronic joint diseases such as osteoarthritis and rheumatoid arthritis.


Arthritis, Rheumatoid , Meniscus , Osteoarthritis , Humans , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/pathology , Osteoarthritis/pathology , Synovial Membrane/pathology , Tissue Engineering/methods
5.
Arthritis Rheumatol ; 76(2): 216-230, 2024 02.
Article En | MEDLINE | ID: mdl-37610277

OBJECTIVE: Adult skeletal stem cells (SSCs) that give rise to chondrocytes, osteocytes, and stromal cells as progeny have been shown to contribute to cartilage regeneration in osteoarthritis (OA). Understanding extrinsic and intrinsic regulators of SSC fate and function can therefore identify putative candidate factors to enhance cartilage regeneration. This study explores how the DNA hydroxymethylase Tet1 regulates SSC function in OA. METHODS: We investigated the differences in the SSC lineage tree and differentiation potential in neonatal and adult Tet1+/+ and Tet1-/- mice with and without injury and upon OA induction and progression. Using RNA sequencing, the transcriptomic differences between SSCs and bone cartilage stroma progenitor cells (BCSPs) were identified in Tet1+/+ mice and Tet1-/- mice. RESULTS: Loss of Tet1 skewed the SSC lineage tree by expanding the SSC pool and enhanced the chondrogenic potential of SSCs and BCSPs. Tet1 inhibition led to enhanced chondrogenesis in human SSCs and chondroprogenitors isolated from human cartilage. Importantly, TET1 inhibition in vivo in late stages of a mouse model of OA led to increased cartilage regeneration. Transcriptomic analyses of SSCs and BCSPs lacking Tet1 revealed pathway alterations in transforming growth factor ß signaling, melatonin degradation, and cartilage development-associated genes. Lastly, we report that use of the hormone melatonin can dampen inflammation and improve cartilage health. CONCLUSION: Although Tet1 is a broad epigenetic regulator, melatonin can mimic the inhibition ability of TET1 to enhance the chondrogenic ability of SSCs. Melatonin administration has the potential to be an attractive stem cell-based therapy for cartilage regeneration.


Melatonin , Mesenchymal Stem Cells , Osteoarthritis , Adult , Humans , Mice , Animals , Melatonin/metabolism , Mesenchymal Stem Cells/metabolism , Cartilage/metabolism , Stem Cells/metabolism , Chondrocytes/metabolism , Cell Differentiation/genetics , Osteoarthritis/genetics , Chondrogenesis , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
6.
JCI Insight ; 7(20)2022 10 04.
Article En | MEDLINE | ID: mdl-36194485

No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials owing to the unmapped interpatient heterogeneity and disease complexity. We used a single-cell platform based on cytometry by time-of-flight (cyTOF) to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with 2 drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope-labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor cell populations. The NF-κB pathway inhibition decreased the expression of p-NF-κB, HIF2A, and inducible NOS in multiple chondrocyte clusters and significantly depleted 4 p16ink4a-expressing senescent populations, including NOTCH1+STRO1+ chondroprogenitor cells. While kartogenin also affected select p16ink4a-expressing senescent clusters, there was a less discernible effect on chondroprogenitor cell populations. Overall, BMS-345541 elicited a uniform drug response in all patients, while only a few responded to kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and patient stratification.


Cartilage , Drug Evaluation, Preclinical , Osteoarthritis , Humans , Cartilage/drug effects , Cartilage/metabolism , Drug Evaluation, Preclinical/methods , Homeostasis/drug effects , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods
7.
J Exp Clin Cancer Res ; 41(1): 54, 2022 Feb 08.
Article En | MEDLINE | ID: mdl-35135586

BACKGROUND: Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS: In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS: Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.


Breast Neoplasms/genetics , Phospholipases A2, Cytosolic/antagonists & inhibitors , S100 Calcium Binding Protein A7/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Tumor Microenvironment
8.
Tissue Eng Part A ; 28(9-10): 433-446, 2022 05.
Article En | MEDLINE | ID: mdl-34693750

Mesenchymal stromal cells (MSCs) have been widely investigated for their regenerative capacity, anti-inflammatory properties and beneficial immunomodulatory effects across multiple clinical indications. Nevertheless, their widespread clinical utilization is limited by the variability in MSC quality, impacted by donor age, metabolism, and disease. Human induced pluripotent stem cells (hiPSCs) generated from readily accessible donor tissues, are a promising source of stable and rejuvenated MSC but differentiation methods generally require prolonged culture and result in low frequencies of stable MSCs. To overcome this limitation, we have optimized a quick and efficient method for hiPSC differentiation into footprint-free MSCs (human induced MSCs [hiMSCs]) in this study. This method capitalizes on the synergistic action of growth factors Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4), leading to an enrichment of MSC after only 4 days of treatment. These hiMSCs demonstrate a significant upregulation of mesenchymal stromal markers (CD105+, CD90+, CD73, and cadherin 11) compared with bone marrow-derived MSCs (bmMSCs), with reduced expression of the pluripotency genes (octamer-binding transcription factor [Oct-4], cellular myelocytomatosis oncogene [c-Myc], Klf4, and Nanog homebox [Nanog]) compared with hiPSC. Moreover, they show improved proliferation capacity in culture without inducing any teratoma formation in vivo. Osteogenesis, chondrogenesis, and adipogenesis assays confirmed the ability of hiMSCs to differentiate into the three different lineages. Secretome analyses showed cytokine profiles compared with bmMSCs. Encapsulated hiMSCs in alginate beads cocultured with osteoarthritic (OA) cartilage explants showed robust immunomodulation, with stimulation of cell growth and proteoglycan production in OA cartilage. Our quick and efficient protocol for derivation of hiMSC from hiPSC, and their encapsulation in microbeads, therefore, presents a reliable and reproducible method to boost the clinical applications of MSCs.


Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell Differentiation , Chondrogenesis/genetics , Humans , Immunomodulation , Osteogenesis/genetics
9.
Adv Mater ; 33(43): e2101966, 2021 Oct.
Article En | MEDLINE | ID: mdl-34499389

Organoids are lumen-containing multicellular structures that recapitulate key features of the organs, and are increasingly used in models of disease, drug testing, and regenerative medicine. Recent work has used 3D culture models to form organoids from human induced pluripotent stem cells (hiPSCs) in reconstituted basement membrane (rBM) matrices. However, rBM matrices offer little control over the microenvironment. More generally, the role of matrix viscoelasticity in directing lumen formation remains unknown. Here, viscoelastic alginate hydrogels with independently tunable stress relaxation (viscoelasticity), stiffness, and arginine-glycine-aspartate (RGD) ligand density are used to study hiPSC morphogenesis in 3D culture. A phase diagram that shows how these properties control hiPSC morphogenesis is reported. Higher RGD density and fast stress relaxation promote hiPSC viability, proliferation, apicobasal polarization, and lumen formation, while slow stress relaxation at low RGD densities triggers hiPSC apoptosis. Notably, hiPSCs maintain pluripotency in alginate hydrogels for much longer times than is reported in rBM matrices. Lumen formation is regulated by actomyosin contractility and is accompanied by translocation of Yes-associated protein (YAP) from the nucleus to the cytoplasm. The results reveal matrix viscoelasticity as a potent factor regulating stem cell morphogenesis and provide new insights into how engineered biomaterials may be leveraged to build organoids.


Biocompatible Materials
10.
Bio Protoc ; 11(14): e4086, 2021 Jul 20.
Article En | MEDLINE | ID: mdl-34395725

Single-cell technologies have allowed high-resolution profiling of tissues and thus a deeper understanding of tissue homeostasis and disease heterogeneity. Understanding this heterogeneity can be especially important for tailoring treatments in a patient-specific manner. Here, we detail methods for preparing human cartilage tissue for profiling via cytometry by time-of-flight (cyTOF). We have previously utilized this method to characterize several rare cell populations in cartilage, including cartilage-progenitor cells, inflammation-amplifying cells (Inf-A), and inflammation-dampening cells (Inf-D). Previous bio-protocols have focused on cyTOF staining of PBMCs. Therefore, here we detail the steps unique to the processing of human cartilage and chondrocytes. Briefly, cartilage tissue is digested to release individual chondrocytes, which can be expanded and manipulated in culture. These cells are then collected and fixed in preparation for cyTOF, followed by standard staining and analysis protocols.

11.
Nat Biomed Eng ; 5(12): 1472-1484, 2021 12.
Article En | MEDLINE | ID: mdl-33707778

Changes in the composition and viscoelasticity of the extracellular matrix in load-bearing cartilage influence the proliferation and phenotypes of chondrocytes, and are associated with osteoarthritis. However, the underlying molecular mechanism is unknown. Here we show that the viscoelasticity of alginate hydrogels regulates cellular volume in healthy human chondrocytes (with faster stress relaxation allowing cell expansion and slower stress relaxation restricting it) but not in osteoarthritic chondrocytes. Cellular volume regulation in healthy chondrocytes was associated with changes in anabolic gene expression, in the secretion of multiple pro-inflammatory cytokines, and in the modulation of intracellular calcium regulated by the ion-channel protein transient receptor potential cation channel subfamily V member 4 (TRPV4), which controls the phosphorylation of glycogen synthase kinase 3ß (GSK3ß), an enzyme with pleiotropic effects in osteoarthritis. A dysfunctional TRPV4-GSK3ß pathway in osteoarthritic chondrocytes rendered the cells unable to respond to environmental changes in viscoelasticity. Our findings suggest strategies for restoring chondrocyte homeostasis in osteoarthritis.


Chondrocytes , TRPV Cation Channels , Cells, Cultured , Extracellular Matrix , Glycogen Synthase Kinase 3 beta , Humans
12.
Curr Osteoporos Rep ; 19(2): 131-140, 2021 04.
Article En | MEDLINE | ID: mdl-33559841

PURPOSE OF REVIEW: The ability to analyze the molecular events occurring within individual cells as opposed to populations of cells is revolutionizing our understanding of musculoskeletal tissue development and disease. Single cell studies have the great potential of identifying cellular subpopulations that work in a synchronized fashion to regenerate and repair damaged tissues during normal homeostasis. In addition, such studies can elucidate how these processes break down in disease as well as identify cellular subpopulations that drive the disease. This review highlights three emerging technologies: single cell RNA sequencing (scRNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), and Cytometry by Time-Of-Flight (CyTOF) mass cytometry. RECENT FINDINGS: Technological and bioinformatic tools to analyze the transcriptome, epigenome, and proteome at the individual cell level have advanced rapidly making data collection relatively easy; however, understanding how to access and interpret the data remains a challenge for many scientists. It is, therefore, of paramount significance to educate the musculoskeletal community on how single cell technologies can be used to answer research questions and advance translation. This article summarizes talks given during a workshop on "Single Cell Omics" at the 2020 annual meeting of the Orthopedic Research Society. Studies that applied scRNA-seq, ATAC-seq, and CyTOF mass cytometry to cartilage development and osteoarthritis are reviewed. This body of work shows how these cutting-edge tools can advance our understanding of the cellular heterogeneity and trajectories of lineage specification during development and disease.


Musculoskeletal Development/physiology , Musculoskeletal Diseases/physiopathology , Musculoskeletal System/cytology , Single-Cell Analysis/methods , Chromatin Immunoprecipitation Sequencing , Flow Cytometry , Homeostasis/physiology , Humans , RNA-Seq
13.
Adv Healthc Mater ; 10(8): e2002118, 2021 04.
Article En | MEDLINE | ID: mdl-33434393

The anti-inflammatory secretome of mesenchymal stromal cells (MSCs) is lucrative for the treatment of osteoarthritis (OA), a disease characterized by low-grade inflammation. However, the precise effects of the MSC secretome on patient-derived OA tissue is lacking. To investigate these effects, alginate encapsulated MSCs are co-cultured with patient-derived OA cartilage explants for 8 days. Proteoglycan distribution in OA cartilage explants examined by Safranin O staining is markedly improved when cultured with MSC microbeads as compared to control OA explants cultured alone. Total sulfated glycosaminoglycan (sGAG) content in OA explants is significantly increased upon co-culture with MSC microbeads on day 8. The sGAG released into the culture media is unchanged by the presence of MSC microbeads, suggesting de novo sGAG synthesis in OA explants. Co-culture with MSC microbeads increased the DNA content and Ki67+ cells in OA explants, indicating proliferation. An increase in secreted cytokines IL-10, HGF, and sFAS assessed by multiplex cytokine assay, increased TIMP1 levels, and reduction in percent apoptotic cells in OA explants is noted. Together, data demonstrates that paracrine factors secreted by alginate encapsulated MSCs microbeads in response to OA cartilage, create an anabolic, proliferative, and anti-apoptotic microenvironment inducing endogenous regeneration in clinically relevant, patient-derived OA cartilage.


Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Cartilage , Cells, Cultured , Chondrocytes , Humans , Microspheres , Osteoarthritis/therapy , Regeneration
14.
Methods Mol Biol ; 2221: 101-108, 2021.
Article En | MEDLINE | ID: mdl-32979201

Cytosine modifications can alter the epigenetic landscape of a cell, affecting the binding of transcription factors, chromatin organizing complexes, and ultimately affecting gene expression and cell fate. 5-Hydroxymethylcytosine (5hmC) modifications are generated by the Ten-eleven-translocation (TET) family of enzymes, TET 1, 2, and 3, through the oxidation of methylated cytosines (5mC). The TET family is capable of further oxidizing 5hmC to 5fC and 5caC, leading to eventual DNA demethylation. However, 5hmC marks can also exist stably in DNA. Stable 5hmC is enriched in the gene bodies of activated genes in multiple tissues, as well as associated with regulatory regions such as enhancers. Alterations to 5hmC patterns have now been found in multiple diseases including osteoarthritis. Here, we describe a method to map 5hmC modifications by next-generation sequencing using a technique based on the selective modification and enrichment of the 5hmC mark. We additionally provide a bioinformatic analysis pipeline to interpret the resulting data.


5-Methylcytosine/analogs & derivatives , DNA/chemistry , High-Throughput Nucleotide Sequencing/methods , Muscle, Skeletal/chemistry , 5-Methylcytosine/analysis , Animals , DNA Methylation , Humans
15.
JBMR Plus ; 4(8): e10383, 2020 Aug.
Article En | MEDLINE | ID: mdl-33134768

Skeletal development is a tightly orchestrated process in which cartilage and bone differentiation are intricately intertwined. Recent studies have highlighted the contribution of epigenetic modifications and their writers to skeletal development. Methylated cytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the Ten-eleven-translocation (TET) enzymes leading to demethylation. We have previously demonstrated that 5hmC is stably accumulated on lineage-specific genes that are activated during in vitro chondrogenesis in the ATDC5 chondroprogenitors. Knockdown (KD) of Tet1 via short-hairpin RNAs blocked ATDC5 chondrogenic differentiation. Here, we aimed to provide the mechanistic basis for TET1 function during ATDC5 differentiation. Transcriptomic analysis of Tet1 KD cells demonstrated that 54% of downregulated genes were SOX9 targets, suggesting a role for TET1 in mediating activation of a subset of the SOX9 target genes. Using genome-wide mapping of 5hmC during ATDC5 differentiation, we found that 5hmC is preferentially accumulated at chondrocyte-specific class II binding sites for SOX9, as compared with the tissue-agnostic class I sites. Specifically, we find that SOX9 is unable to bind to Col2a1 and Acan after Tet1 KD, despite no changes in SOX9 levels. Finally, we compared this KD scenario with the genetic loss of TET1 in the growth plate using Tet1 -/- embryos, which are approximately 10% smaller than their WT counterparts. In E17.5 Tet1 -/- embryos, loss of SOX9 target gene expression is more modest than upon Tet1 KD in vitro. Overall, our data suggest a role for TET1-mediated 5hmC deposition in partly shaping an epigenome conducive for SOX9 function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

16.
Trends Pharmacol Sci ; 41(8): 557-569, 2020 08.
Article En | MEDLINE | ID: mdl-32586653

Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA.


Cartilage, Articular , Osteoarthritis , Bone and Bones , Epigenesis, Genetic , Humans , Inflammation , Osteoarthritis/drug therapy , Osteoarthritis/genetics
17.
Sci Transl Med ; 12(539)2020 04 15.
Article En | MEDLINE | ID: mdl-32295898

Osteoarthritis (OA) is a degenerative disease of the joint, which results in pain, loss of mobility, and, eventually, joint replacement. Currently, no disease-modifying drugs exist, partly because of the multiple levels at which cartilage homeostasis is disrupted. Recent studies have highlighted the importance of epigenetic dysregulation in OA, sparking interest in the epigenetic modulation for this disease. In our previous work, we characterized a fivefold increase in cytosine hydroxymethylation (5hmC), an oxidized derivative of cytosine methylation (5mC) associated with gene activation, accumulating at OA-associated genes. To test the role of 5hmC in OA, here, we used a mouse model of surgically induced OA and found that OA onset was accompanied by a gain of ~40,000 differentially hydroxymethylated sites before the notable histological appearance of disease. We demonstrated that ten-eleven-translocation enzyme 1 (TET1) mediates the 5hmC deposition because 98% of sites enriched for 5hmC in OA were lost in Tet1-/- mice. Loss of TET1-mediated 5hmC protected the Tet1-/- mice from OA development, including degeneration of the cartilage surface and osteophyte formation, by directly preventing the activation of multiple OA pathways. Loss of TET1 in human OA chondrocytes reduced the expression of the matrix metalloproteinases MMP3 and MMP13 and multiple inflammatory cytokines. Intra-articular injections of a dioxygenases inhibitor, 2-hydroxyglutarate, on mice after surgical induction of OA stalled disease progression. Treatment of human OA chondrocytes with the same inhibitor also phenocopied TET1 loss. Collectively, these data demonstrate that TET1-mediated 5hmC deposition regulates multiple OA pathways and can be modulated for therapeutic intervention.


DNA-Binding Proteins , Mixed Function Oxygenases , Osteoarthritis , Pharmaceutical Preparations , Proto-Oncogene Proteins , 5-Methylcytosine , Animals , DNA-Binding Proteins/genetics , Mice , Osteoarthritis/genetics , Proto-Oncogene Proteins/genetics
18.
Nat Commun ; 11(1): 1545, 2020 03 24.
Article En | MEDLINE | ID: mdl-32210226

Aging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels. At the chromatin level, aging associates with progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis. Nuclear reprogramming to pluripotency can revert both the age and the identity of any cell to that of an embryonic cell. Recent evidence shows that transient reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice. However, it is unknown how this form of rejuvenation would apply to naturally aged human cells. Here we show that transient expression of nuclear reprogramming factors, mediated by expression of mRNAs, promotes a rapid and broad amelioration of cellular aging, including resetting of epigenetic clock, reduction of the inflammatory profile in chondrocytes, and restoration of youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity.


Cell Nucleus/metabolism , Cellular Reprogramming/physiology , Cellular Senescence/physiology , RNA, Messenger/metabolism , Rejuvenation/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/physiology , Animals , Cells, Cultured , Chondrocytes , DNA Methylation/physiology , Endothelial Cells , Epigenesis, Genetic/physiology , Female , Fibroblasts , Gene Expression Profiling , Humans , Intravital Microscopy , Male , Mice , Middle Aged , Muscle Cells , Primary Cell Culture , Stem Cells , Young Adult
19.
Sci Adv ; 6(11): eaay5352, 2020 03.
Article En | MEDLINE | ID: mdl-32201724

Aging or injury leads to degradation of the cartilage matrix and the development of osteoarthritis (OA). Because of a paucity of single-cell studies of OA cartilage, little is known about the interpatient variability in its cellular composition and, more importantly, about the cell subpopulations that drive the disease. Here, we profiled healthy and OA cartilage samples using mass cytometry to establish a single-cell atlas, revealing distinct chondrocyte progenitor and inflammation-modulating subpopulations. These rare populations include an inflammation-amplifying (Inf-A) population, marked by interleukin-1 receptor 1 and tumor necrosis factor receptor II, whose inhibition decreased inflammation, and an inflammation-dampening (Inf-D) population, marked by CD24, which is resistant to inflammation. We devised a pharmacological strategy targeting Inf-A and Inf-D cells that significantly decreased inflammation in OA chondrocytes. Using our atlas, we stratified patients with OA in three groups that are distinguished by the relative proportions of inflammatory to regenerative cells, making it possible to devise precision therapeutic approaches.


Cartilage/metabolism , Cartilage/pathology , Flow Cytometry , Osteoarthritis/metabolism , Osteoarthritis/pathology , Signal Transduction , Single-Cell Analysis , Biomarkers , CD24 Antigen/metabolism , Chondrocytes/metabolism , Flow Cytometry/methods , Humans , Osteoarthritis/etiology , Single-Cell Analysis/methods
20.
J Orthop Res ; 37(8): 1760-1770, 2019 08.
Article En | MEDLINE | ID: mdl-31042308

There is intense clinical interest in the potential effects of platelet-rich plasma (PRP) for the treatment of osteoarthritis (OA). This study tested the hypotheses that (i) "lower" levels of the inflammatory mediators (IMs), interleukin-1ß, and tumor necrosis factor α (TNF-α) and (ii) "higher" levels of the growth factors (GFs), insulin-like growth factor 1, and transforming growth factor ß1 within leukocyte-poor PRP correlate with more favorable chondrocyte and macrophage responses in vitro. Samples were collected from 10 "healthy" young male (23-33 years old) human subjects (H-PRP) and nine older (62-85 years old) male patients with severe knee OA (OA-PRP). The samples were separated into groups of "high" or "low" levels of IM and GF based on multiplex cytokine and enzyme-linked immunosorbent assay data. Three-dimensional (3D) alginate bead chondrocyte cultures and monocyte-derived macrophage cultures were treated with 10% PRP from donors in different groups. Gene expression was analyzed by quantitative polymerase chain reaction. Contrary to our hypotheses, the effect of PRP on chondrocytes and macrophages was mainly influenced by the age and disease status of the PRP donor as opposed to the IM or GF groupings. While H-PRP showed similar effects on expression of chondrogenic markers (Col2a1 and Sox9) as the negative control group (p > 0.05), OA-PRP decreased chondrocyte expression of Col2a1 and Sox-9 messenger RNA by 40% and 30%, respectively (Col2a1, p = 0.015; Sox9, p = 0.037). OA-PRP also upregulated TNF-α and matrix metallopeptidase 9 (p < 0.001) gene expression in macrophages while H-PRP did not. This data suggests that PRP from older individuals with OA contain factors that may suppress chondrocyte matrix synthesis and promote macrophage inflammation in vitro. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1760-1770, 2019.


Chondrocytes/metabolism , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Osteoarthritis, Knee/metabolism , Platelet-Rich Plasma/metabolism , Adult , Aged , Aged, 80 and over , Case-Control Studies , Humans , Macrophages/metabolism , Male , Middle Aged , Young Adult
...